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Irradiation, dyeing, bleaching, and heat treatment
are widely used methods to alter pearl color. Al-

though most artificial colors are easily recognized,
some resemble attractive colors that occur in nature
(Elen, 2001; Li and Chen, 2001; Zachovay, 2005;
Wang et al., 2006; “Better techniques improve brown
pearls,” 2006; McClure et al., 2010). 

Lower-quality freshwater and saltwater cultured
pearls are regularly exposed to 60Co gamma-ray radi-
ation in an attempt to simulate black pearls or en-
hance orient (Crowningshield, 1988; Li and Chen,
2002; O’Donoghue, 2006). In recent years, the irradi-
ation process has been applied to not only Akoya cul-
tured pearls and freshwater cultured pearls (FWCPs),

but also to South Sea cultured pearls (SSCPs) (Choi et
al., 2012). The irradiation-induced color change re-
sults from the darkening of the nucleus, caused by
MnCO3 oxidation, as well as denatured damage to the
pearl’s conchiolin (Matsuda and Miyoshi, 1988).
FWCPs have a higher abundance of proteinous com-
ponents and manganese than saltwater pearls (Hatano
and Ganno, 1962).

Gamma-ray irradiated SSCPs (figure 1) were first
discovered in the Korean market in April 2011. At
the March 2011 Hong Kong Jewelry Show, a Japanese
trader reportedly sold a Korean counterpart irradiated
SSCPs without disclosing the treatment. They were
light gray or silver loose cultured pearls and beads
10–16 mm in size. While a cream, yellow, or black
color is produced by a protein pigment in the nacre,
a blue or silver color is caused by organic material be-
tween the nacre and nucleus (Komatsu, 1999; O’-
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Irradiated South Sea cultured pearls (SSCPs) from
the Pinctada maximamollusk typically show col-
ors from light gray to silver. It is difficult to identify
gamma-ray irradiation of SSCPs using standard
gemological methods because of their thick
nacre. Therefore, an advanced analytical tech-
nique such as electron spin resonance (ESR)
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Figure 1. This necklace contains gamma-ray irradi-
ated silver South Sea cultured pearls (12.0–14.0 mm).
Electron spin resonance (ESR) spectroscopy proved ef-
fective in identifying the gamma irradiation. Photo
by Jae Hak Ko.



Donoghue, 2006). Korean consumers typically prefer
SSCPs with a silver color created by organic material. 

According to the research of Choi et al. (2012),
gamma-ray irradiated SSCPs with colors ranging from
white to cream turned light gray to silver, with the
depth of color correlating with increasing irradiation
dose. A dose of 0.5–1 kGy caused a light gray color,
while a dose above 5 kGy produced a silver color.

For Akoya cultured pearls, with a typical nacre
thickness of 0.2–0.6 mm, irradiation can be identified
through standard gemological tests (Komatsu, 1999;
O’Donoghue, 2006). But for SSCPs, which have a
nacre thickness of roughly 1.5–3.0 mm, detecting ir-
radiation is difficult with methods such as transmit-
ted light, magnification, fluorescence reaction, and
UV-Vis spectrometry (Choi et al., 2012).

This study attempted to identify irradiated SSCPs
using electron spin resonance (ESR) spectroscopy. This
method, also known as electron paramagnetic reso-
nance (EPR) spectroscopy, identifies the presence of
unpaired electrons. Moreover, the study sought to
minimize damage during examination by obtaining a
minimal sample of powder from each cultured pearl.

MATERIALS AND METHODS
For the study, some 300 SSCPs weighing 6.55–18.05 ct
(8.0–16.6 mm in diameter) with white to cream color
were exposed to gamma-ray irradiation at room tem-
perature. The irradiation was conducted at the 60Co fa-
cility of the KAERI (Korea Atomic Energy Research
Institute) in Jeongeup, South Korea. The absorbed
doses were set at 0.2, 0.4, 0.6, 0.8, 1, 5, and 100 kGy.

Inductively Coupled Plasma-Atomic Emission Spec-
trometer. Chemical composition analyses of the
SSCPs were performed with an inductively coupled
plasma–atomic emission spectrometer (ICP-AES,
Varian Vista-PRO). The nacre, nucleus (bead), and
conchiolin were separated and powdered, and 0.2 g
of each powder was dissolved in a solution of 37%
HCl (6 ml) and 65% HNO3 (2 ml). We tested the sam-
ples after 20 minutes at 200°C and after 10 minutes
at the same temperature to obtain an average value.

Electron Spin Resonance Spectroscopy. This study re-
lied on electron spin resonance analysis to observe
radicals produced by the irradiation process. The ESR
spectrometer gauges the absorbed dose corresponding
to the splitting energy of unpaired electrons in a mag-
netic field. The technique can rapidly identify an ir-
radiation-related signal from a small amount of

sample in a few minutes. For this study, we collected
at least 10 mg of SSCP powder from both the nacre
and the nuclei of each cultured pearl. To determine if
the ESR signals correlated with Mn2+, solid samples
of FWCP, which contain more manganese than
SSCPs, were irradiated with a 100 kGy dose.

Room-temperature ESR spectra were recorded
using a JEOL FA-300 spectrometer with a manganese
marker (MgO: Mn2+), using 9.8 GHz microwave fre-
quency, 1 mW microwave power, a 1–2 G modula-
tion amplitude, a 2 min sweep time, and a 0.03 s
response time (figure 2).

Mn marker for ESR analysis. The g-factors of free rad-
icals created by irradiation are approximately 2.00. For
comparison, the “free electron” g-factor is 2.0023.
Standard reference samples can be used to correct for
any systematic errors in the measured magnetic field
values and to verify the sensitivity of the system. Stan-
dard samples include DPPH (2.2-diphenyl-1-picryl-hy-
drazyl), TCNQ-Li (tetracyanoquino-dimethane Li

NOTES & NEW TECHNIQUES                                                                         GEMS & GEMOLOGY                                             WINTER 2012     293

Figure 2. This JEOL FA-300 spectrometer with a man-
ganese marker is the ESR instrument used in the
study. Photo by Y. C. Kim.



saly), CaO:Mn2+, and MgO:Mn2+. The choice of stan-
dard sample used depends on what the user wants to
determine. For example, DPPH is used to calculate g-
factors, to monitor the sensitivity of the equipment,

and to quantify spin concentrations. TCNQ-Li is used
to find the g-factor. CaO:Mn2+, MgO:Mn2+, and Mn2+

are used to measure the g-factor and to correct mag-
netic field variations. 
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Electron spin resonance (ESR), alternatively known as
electron paramagnetic resonance (EPR), is a spectro-
scopic method for observing the resonance absorption
of microwave power by paramagnetic molecules, defects
or free radicals (characterized by at least one unpaired
electron) which are simultaneously subjected to an ap-
plied magnetic field. For most materials the electrons
are “paired,” and are thus invisible to ESR. ESR can be
used to detect paramagnetic defects or free radicals in-
troduced by irradiation in some materials, and has been
applied to the study of irradiated food (Chauhan et al.,
2008). Oftentimes, its high sensitivity allows the detec-
tion of irradiation-related defects in small sample vol-
umes in just a few minutes, making it an effective and
minimally invasive technique. 

In a typical ESR experiment the sample is subjected
to microwaves of a fixed energy (i.e., fixed frequency ν),
while the magnitude of the magnetic field is varied. A
property called electron spin is attributed to each un-
paired electron, where a single unpaired electron has
only two allowed energy states. ESR is used to probe the
energy differences between those states. In the absence
of a magnetic field the two states have the same energy,
yet when a magnetic field is applied the energy separa-
tion of the states will increase. The dominant interaction
governing the splitting is known as the Zeeman effect,
whereby the energy difference increases linearly with in-
creasing magnetic field according to the equation ∆E =
gbH. Here ∆E denotes the energy difference, g is the spec-
troscopic splitting factor known as the g-factor, b is a
constant called the Bohr magneton, and H is the mag-
netic field. The g-factor is influenced by the characteris-
tic environment of the unpaired electron(s) of a free
radical, providing a “fingerprint” to be used for identifi-
cation. The g-factor values of known paramagnetic mol-
ecules, defects and free radicals are tabulated in the
literature. There are additional interactions which can
lead to more complicated spectra and a wealth of addi-
tional information, but those will not be discussed here. 

Figure A-1 shows the energy diagram for the electron
spins of two different radical species with differing g-fac-
tors, one given by g1 and the other by g2. As the magnetic
field is increased it is apparent that the energy levels for
the two radical species split at different rates. The ESR
resonance condition is met when the energy separation
is equal to the energy of the applied microwave radiation,

∆E = gbH = hν (where h is Planck’s constant), leading to
an absorption of the microwaves and the detection of an
ESR signal. Thus, the signals for the radical species with
g-factors g1 and g2 will occur at H1 and H2, respectively.
Hence, the identity of the radical(s) producing the ESR
spectrum can be determined by careful analysis of the
magnetic field values at which the resonance signals are
detected. Furthermore, the intensity of the ESR signal is
proportional to the number of radicals present, allowing
quantitative analysis.

BOX A: WHAT IS ESR?

Figure A-1. Energy levels of two paramagnetic species
with g-factors g1 and g2. As the magnetic field H is in-
creased the energy levels for the two species split at dif-
ferent rates, according to the Zeeman effect. Resonance
occurs, and signals with derivative lineshapes are de-
tected, when the energy separations (∆E1 and ∆E2) are
equal to the energy of the applied microwaves (hν).
From Ikeya (1993).
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The g-factor of most standard samples is also lo-
cated around 2.00. The Mn marker is shown with six
Mn2+ signals; the third (2.034) and fourth (1.981) sig-
nals are used to correct magnetic field variations.
Each signal has a regular interval from 2.00. From
this property, the MgO:Mn2+ marker could be more
suitable to measuring the g-factor than the alterna-
tive standard samples. The MgO:Mn2+ marker was
supplied with the Jeol X-band spectrometer in the
shape of a small rod that can be electromechanically
inserted externally into the microwave cavity. When
a sample and a Mn marker are measured simultane-
ously, the resulting ESR spectrum will contain signal
contributions from both. It is easy to distinguish the
ESR spectra of one from the other, since the Mn2+ sig-
nals have the opposite phase to that of the sample’s
signal (i.e., the signal’s lineshape will appear to have
been flipped across the baseline). 

RESULTS AND DISCUSSION
The major element of a pearl is calcium. Chemical
composition analysis of bead-cultured pearls using
ICP-AES demonstrates that the nacre and the fresh-
water nucleus contain similar trace elements but vary
in their composition. The nacre contains more Na,
Mg, and Sr, while the nucleus has higher Mn and P
contents (table 1).

After 60Co gamma-ray irradiation at a dose of 5
kGy, the SSCPs exhibited gray to silver coloration
(figure 3). The interior of one of the irradiated pearls
revealed a grayish brown to dark gray nucleus, along
with an altered nacre color (figure 4). The irradiation-
induced color change is chiefly attributed to the dark-
ening of the nucleus (bead), which in turn darkens the
nacre—especially in the thinner-skinned Akoya cul-
tured pearls (Komatsu, 1999). As shown in this exper-
iment, color change took place in the nacre as well.
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Figure 3. Before and
after photos of SSCPs ex-
posed to gamma irradia-
tion at a dose of 5 kGy.
The irradiated pearls
turned gray to silver,
slightly different from
their original colors.
Photos by H. M. Choi.

Figure 4. These photos show the interior (left) and exterior (right) of a light yellow South Sea cultured pearl before
and after irradiation at a dose of 5 kGy. Left: The nucleus (bead) became grayish brown to dark gray, and the
nacre color was similarly altered. Right: The pearl’s surface turned a silver color. Photos by B. H. Lee.



Figure 5 shows that the concentration of radicals
produced by irradiation exposure increases with the
absorbed dose. Formerly undetected free radicals
were observed after a low-dose radiation of 0.2 kGy.
The g-factor was 2.0015 ± 0.0005, which agrees with
that of CO2

– radicals (Wieser et al., 1985; Ikeya, 1993;
Seletchi and Duliu, 2007). With higher absorbed
doses, the CO2

– radical signal intensity further inten-
sified. The identification of CO2

– radicals through
ESR analysis thus serves as a way to distinguish ir-
radiated cultured pearls.

Matsuda and Miyoshi (1988) reported that the ir-
radiation-induced change of color is caused by man-
ganese (Mn). They noted that MnCO3 in the nucleus
(bead) turned into oxidations such as Mn3O4, Mn2O3,
and Mn2O after irradiation. Their results are still
cited in literature related to color change in irradiated
pearls (e.g., Komatsu, 1999; Wada, 1999; McClure,
2010).

Yet existing mechanisms are insufficient to ex-
plain the alteration of pearl color by irradiation (Li
and Chen, 2002). Based on the results of gamma-ray

irradiation tests in this study, the authors believe
that post-irradiation color change cannot solely be
attributed to MnCO3 oxidation. Two factors support
this hypothesis:

1. After irradiation, the pearl nacre blackened to a
similar extent as the nucleus (bead), even though
it contains approximately 20 times less Mn (see
figure 4 and table 1).

Figure 6 is an ESR spectrum comparing untreated
FWCP, irradiated (100 kGy) FWCP, and a Mn
marker (MgO: Mn2+) attached to the JEOL equip-
ment. The Mn marker consists of Mn2+ and shows
six sharp peaks in the ESR spectrum (figure 6b).
Before (figure 6a) and after (figure 6c) irradiation
spectra of FWCPs (typical in the carbonate spec-
trum) do not match the positions of the Mn2+ sig-
nals. Nevertheless, a change was observed in the
spectra before and after irradiation: the formation
of CO2

– radicals between the third and fourth
Mn2+ peaks (highlighted by the green circle in fig-
ure 6c). Because these results were the same
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TABLE 1. Representative composition of the nacre and nucleus in South Sea cultured pearls in ppm (parts per
million), determined by ICP-AES.

Sample

Nacre

Nucleus

Ca

293099.06

287998.86

Na

4717.01

1704.52

Mg

100.27

26.24

P

12.47

94.42

Mn

19.43

431.43

Fe

30.29

26.80

Sr

1086.80

249.21

Figure 5. These ESR spectra show a South Sea cultured pearl’s nacre (left) and nucleus (right) before and after irra-
diation up to 1 kGy. These spectra were obtained for a single cultured pearl irradiated with different doses. CO2

–

radicals appeared as irradiation doses increased in both the nacre (left) and nucleus (right). Nucleus spectra (right)
show a large unassigned signal in the 333–337 mT range, both before and after irradiation.

MAGNETIC FIELD (mT)

IN
TE

N
SI

TY

ESR SPECTRA

-1000

0

1000

2000

Mn III (Mn2+)

0 kGy

0.2kGy

0.4kGy

0.6kGy

0.8kGy

1kGy

336 340332 342338334

MgO:Mn2+

Mn IV (Mn2+)

MgO:Mn2+

-factorg

MAGNETIC FIELD (mT)

IN
TE

N
SI

TY

ESR SPECTRA

-1000

0

1000

2000

Mn III (Mn2+)

0 kGy

0.2kGy

0.4kGy

0.6kGy

0.8kGy

1kGy

336 340332 342338334

MgO:Mn2+

Mn IV (Mn2+)

MgO:Mn2+

-factorg



among all SSCPs investigated in this study, peaks
in the ESR spectrum are unrelated to Mn.

2. CO2
– radicals appeared as irradiation doses in-

creased and multiplied in proportion to the dose
(figure 7). The intensity of CO2

– radicals was also
proportional to the blackening of the pearl nucleus
(bead). The CO3

2– molecular ion in CaCO3 is easily
ionized by radiation. Elementary defects induced
by ionizing radiation are an electron center ( CO3

3–)
and a hole center (CO3

–). While the CO3
3– and CO3

–

centers are stable at low temperatures, the elec-
tron center CO2

–, formed by irradiation, is an elec-
tron center similar but more stable than CO3

3–

(Ikeya, 1993). Additionally, we found that the
color of nacre and nucleus had been bleached
under incandescent light (approximately 50°C) for
30 days. The color changed by irradiation and heat
(by light) is related to the color center. Therefore,
the color change of the nacre and the blackening
of the nucleus (bead) are believed to be related to
color centers formed by CO2

– radicals.

Choi et al. (2012) found that after irradiation, glu-
tamic acid decreased 11.43% (from 3.5% to 3.1%),
alanin 21.8% (from 22.5% to 21.8%), and histidine

43.75% (from 1.6% to 0.9%), according to amino acid
analysis to examine the change of protein between
aragonite platelets in pearl nacre. Hatano and Ganno
(1962) found that gamma-ray irradiation destroyed
32% of the histidine, 16.6% of the methionine, 11%
of the glutamic acid, and 9.3% of the proline in the
protein of the FWCPs. The destruction of protein
caused by irradiation can also alter the color of SSCPs. 

CO2
– radicals at the absorbed irradiation dose of

0.2 kGy are barely visible in the nucleus sample but
far more intense at doses above 0.4 kGy (figure 5,
right). In particular, CO2

– radicals emerging after ir-
radiation were better observed in the nacre than in
the nucleus at the same absorbed dose (figure 5, left).
After normalizing the results of figure 5 to a nonir-
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In Brief 
•  Gamma-ray irradiation is routinely applied to South 
    Sea cultured pearls (SSCPs), typically producing a light 
    gray to silver color.

•  For SSCPs, which have a particularly thick nacre, 
    detecting irradiation is difficult using methods such as 
    transmitted light, magnification, fluorescence reaction, 
    and UV-Vis spectrometry.

•  Electron spin resonance (ESR) spectroscopy rapidly 
    identifies the presence of CO2

– radicals, whose concen-
    tration is proportional to the absorbed irradiation dose.

Figure 6. This graph demonstrates the spectra acquired
for solid samples of FWCPs, which contain more Mn
than saltwater cultured pearls. Shown are the spectra
of untreated FWCPs (a), irradiated FWCPs (c), and a
Mn marker (b). The Mn marker has six Mn2+ signals,
and their positions are highlighted by the dotted verti-
cal lines. After irradiation, CO2

– radicals are observed
only between the third and fourth Mn2+ resonance
peaks. The signals before (a) and after (c) irradiation do
not match the positions of the Mn2+ signals (b). 
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Figure 7. Normalizing the CO2
– radical intensity of

figure 5 shows that the radicals’ intensity increases
depending on irradiation dose, even though the CO2

–

radical of the nucleus (bead) decreased at 0.6 kGy.
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radiated spectrum (0 kGy, black line), the increased
intensity of radicals was calculated by peak-to-peak
height. The intensity of the CO2

– radical is stronger
in the nacre than in the nucleus when irradiated with
a dose above 0.4 kGy (figure 7).

Ikeya (1993) reported that Mg2+ ions might be ac-
companied by H2O molecules, leading to a rapid re-
duction in hydrated radicals. The saturation level of
isotropic CO2

– also increases with the Mg/Ca ratio.
Barabas et al. (1989) studied synthetic carbonate crys-
tals doped with Mg2+ and observed the following: (1)
ESR spectra that displayed signals at the same spec-
troscopic properties as natural carbonates; and (2) an
increase of the g-factor signal with Mg concentration
in the carbonate crystals. 

Mg also plays an important role in the formation
of the crystal lattice of carbonates (Katz, 1973) and
may enhance the formation of specific defects
(Barabas et al., 1992). Lattice distortions caused by
the incorporation of Mg2+ ions (Goldsmith and Graf,
1958) may lead to CO2

– by creating larger interatomic
distances (Barabas et al., 1992). In this context, the
higher abundance of CO2

– radicals in the nacre is
thought to be related to the Mg/Ca ratio.

Considering the combined published observations
on Mg2+ and CO2

– (Ikeya, 1993; Barabas et al., 1989,
1992; and Katz, 1973) it is likely that the saturation
level of CO2

– rises proportionally with the Mg/Ca
ratio in pearls of this study. As shown in table 1, the
nacre and the nucleus (bead) contain 100 and 26 ppm

of Mg, respectively. The nacre’s Mg/Ca ratio is ap-
proximately four times greater than that of the nu-
cleus (bead). Mg, which is more abundant in the
nacre, therefore results in the preferential formation
of CO2

– in the nacre rather than in the nucleus when
exposed to the same absorbed radiation dose. This is
consistent with the higher CO2

– ESR signal intensity
observed in the nacre than in the nucleus (again, see
figure 5). This suggests it is possible to identify an ir-
radiated SSCP using ESR spectroscopy.

CONCLUSIONS
Identifying irradiated SSCPs through traditional
gemological methods has been difficult, as their
nacre is usually quite thick. But as this ESR study
demonstrates, the separation of untreated pearls from
irradiated pearls is possible. In doing so, an infinites-
imal amount of sample was taken from the nacre in
the form of powder. After irradiation, CO2

– radicals
were formed, and their presence was confirmed using
ESR spectroscopy. The amount of CO2

– radicals in-
creased in proportion to the irradiation dose, and
they were more observable in the nacre than in the
nucleus (bead). Until now, irradiation-induced color
changes in pearls were thought to be due to the
change of the MnCO3 oxidation number. But as this
study notes, such color alteration is apparently re-
lated to an alteration caused by protein destruction
rather than Mn, as well as color centers created by
CO2

– radicals.
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